lunes, 1 de octubre de 2007

Pilotos Automáticos

Lo que muestro a continuacion es partes del libro GOBIERNO AUTOMÁTICO EN VELEROS
Sistemas de piloto automático y gobierno automático
Peter Christian Förthmann
El libro esta muy interesante, esta para leerlo completo.


Sistemas de piloto de viento frente a pilotos automáticos

Nuestro propósito al publicar este libro es investigar el funcionamiento y las ventajas y los inconvenientes de los distintos sistemas para ayudar al lector a decidir cuál es el más adecuado para sus necesidades específicas. Las dos categorías principales del sistema de gobierno automático son el piloto automático y el sistema de piloto de viento. Los pilotos
automáticos son sistemas electromecánicos que obtienen su impulso de gobierno de un
compás, mientras que los pilotos de viento usan la fuerza del viento y del agua y obtienen su impulso de gobierno del ángulo del viento aparente.
Un velero genera todo su empuje a partir de la posición del barco y del ajuste de las velas respecto del viento; si las velas no están bien ajustadas no habrá empuje. Esta relación simple explica el motivo por el cual un piloto de viento es ideal para gobernar un velero. El ángulo del viento que utiliza es exactamente el mismo que produce el empuje del barco; una vez establecido este ángulo, el empuje está garantizado. Las ventajas de gobernar hacia el ángulo del viento aparente son especialmente notorias cuando se navega con tendencia a orzar. La más mínima desviación del viento se traduce inmediatamente en un cambio de rumbo asegurando el empuje óptimo –un grado de sensibilidad que supera al del mejor timonel humano.

Koopmans de 65 pies gobernado por piloto automático y piloto de viento.
¿Por qué son necesarios los pilotos automáticos?
En pocas palabras, los pilotos automáticos son compactos y discretos. Cuando se toma la decisión de comprar un sistema de gobierno automático probablemente el principal factor que juega en contra de los pilotos de viento es su aspecto extraño. Por lo general son grandes y voluminosos, algo muy alejado del ornamento ideal del espejo de popa. Además de eso, algunos son pesados y poco manejables y tienden a convertirse en un estorbo cuando se maniobra con el motor en el puerto.
Por el contrario, los pilotos automáticos son prácticamente invisibles en la bañera y pueden ocultarse por completo debajo de la cubierta. Una vez instalados, son fáciles de operar ya que sólo requieren el aprendizaje del manejo de unos pocos botones. Los pilotos automáticos de bañera son ligeros, generalmente baratos y proporcionan un rumbo a compás. Para algunos navegantes éste es un argumento convincente y por ese motivo los pilotos automáticos están llamados a tener éxito.
A lo largo de muchos años el mundo de la vela se polarizó en dos campos. En la década de 1970 los sistemas de piloto de viento llegaron a ser algo común en los yates de alta mar, en los que resultaban indispensables. Sólo en casos excepciona les se los veía en los veleros de recreo o de fines de semana (¡y a veces sólo se colocaban por la ilusión de imitar a los grandes veleros!).
En los últimos 25 años se han suscitado acalorados debates entre los defensores de ambos sistemas. La repetida ins istencia con que algunos defendían que los navíos de varias toneladas de peso se gobernaban “fácilmente” con menos de un amperio de energía ha sido un importante punto de discusión. Hoy en día la visión es más realista y no se aparta de las leyes de la física: toda “potencia generada” (fuerza de gobierno) requiere una cierta “alimentación”(corriente eléctrica/energía). ¿Quién no recuerda la “Ley de la conservación de la energía” aprendida en las lecciones de física de la escuela?

Pilotos automáticos
Cómo funcionan
Los pilotos automáticos dependen de un compás. Un impulso de gobierno producido por el compás acciona un motor eléctrico o hidráulico que despliega o repliega una biela o cilindro hidráulico, que a su vez desplaza el timón para mantener el rumbo del barco. El compás realiza una comparación entre el valor de consigna y el real y continúa la operación de gobierno hasta que el barco retorna al rumbo deseado. Existe una rela ción directa entre:la fuerza de gobierno;la velocidad a la que se ejerce la fuerza de gobierno; y el consumo de corriente.
Las constantes físicas entre estos factores están fijadas,de modo que siempre debe
alcanzarse un compromiso en la única relación importante en un velero: eficacia de gobierno (salida) / consumo de corriente (entrada). Nunca es posible obtener la máxima eficacia de gobierno con un mínimo consumo de energía.
Este compromiso plantea un dilema, puesto que un motor eléctrico puede adaptarse para
que produzca una gran cantidad de energía lentamente o poca energía con rapidez (lo mismo que un coche que es capaz de subir una pendiente pronunciada en primera velocidad, pero no puede hacerlo con la marcha más larga).
Los pilotos automáticos se distinguen por la capacidad del motor que fija automáticamente la relación entre la fuerza aplicada por la biela de empuje y su velocidad de funcionamiento.
Casi todos los fabricantes de pilotos automáticos confían en este montaje de rendimiento probado, por lo que resulta raro ver sistemas con motor de velocidad variable. Esta pronunciada desmultiplicación de la fuerza del motor eléctrico (para aumentarla en la biela de empuje) no es generalizada, puesto que el movimiento correctivo del timón se efectuaría con demasiada lentitud para que el barco regrese eficazmente al rumbo deseado.
Para identificar el piloto automático adecuado en primer lugar es necesario eterminar la torsión máxima del timón (longitud y ancho), el contrapeso (distancia desde el centro del codaste al borde anterior del timón) y el potencial de velocidad del barco. La torsión del timón puede calcularse o formularse empíricamente mediante la medición real de la fuerza de la caña o de la rueda del timón. El fracaso es inevitable si la carga máxima en el timón supera la torsión máxima de la unidad de accionamiento. Si elige un modelo de bajo consumo de energía para un barco relativamente pesado, el rendimiento, en términos de gobernabilidad,estará lejos de ser el ideal. Si elige un sistema que actúe constantemente al límite de su capacidad pronto deberá reemplazarlo por otro de mayores dimensiones. Por último, si se
decide por un piloto automático potente no encontrará una batería capaz de suministrar la energía necesaria sin que deba recargarla regularmente. ¡Cada opción tiene su precio!
Pilotos automáticos de bañera para el gobierno con caña de timón
La forma más simple de piloto automático son los sistemas en los que un motor eléctrico está directamente conectado mediante una transmisión a una biela de empuje. Esta biela se despliega o se repliega para desplazar a la caña del timón.
Los pilotos automáticos de bañera sencillos constan de un solo módulo que incluye el
compás, el motor y la biela de empuje. En los modelos más grandes, la unidad de control y el compás son módulos separados que pueden estar conectados con otros transductores externos mediante un enlace de datos. Autohelm indica sus instrumentos compatibles en red con el prefijo ‘ST’ (SeaTalk), mientras que Navico usa el distintivo “Corus”.
Los sistemas de biela de empuje de caña del timón no son especialmente potentes y por lo tanto sólo resultan útiles en los barcos más pequeños. Utilizan motores eléctricos
relativamente pequeños (ahorro de energía), cuya fuerza debe multiplicarse mediante
engranajes antes de aplicarla a la biela de empuje. Por este motivo son ruidosos; el sonido de un piloto automático de bañera en funcionamiento resulta molesto. En funcionamiento normal, los pilotos automáticos de bañera tienen un consumo relativamente moderado, mientras que con grandes cargas su consumo puede ser de unos 3 amperios. Tienden a ser de movimientos pesados.

El piloto automático de caña de timón AUTOHELM ST 800



Pilotos automáticos de bañera para el gobierno con rueda de timón
Los sistemas de piloto automático para rueda de timón son similares a los descritos anteriormente, excepto en que las correcciones del rumbo las realiza una correa de transmisión, una correa dentada o una rueda dentada que actúa sobre un motón giratorio acoplado a la rueda del navío. Los pilotos automáticos de bañera para el gobierno con rueda de timón pueden estar conectados a una red de datos.

Piloto automático para rueda Navico WP 300 CX






















Pilotos automáticos en el interior del casco
Los pilotos automáticos en el interior del casco utilizan bielas de empuje o sistemas hidráulicos con potentes motores conectados al codaste o al cuadrante que hacen girar directamente al timón principal. También es posible sustituir la conexión mecánica y el eje por un sistema hidráulico en el que una bomba hidráulica proporciona la presión de aceite necesaria para accionar un cilindro hidráulico, que a su vez mueve al timón principal. Este tipo de sistema es adecuado para los barcos de mayor tamaño. Los veleros de más de 21m / 60 pies de eslora con grandes soportes del timón hidráulico usan para el piloto automático bombas de funcionamiento constante controladas por válvulas solenoide.

Los tres módulos de un piloto automático en el interior del casco

Unidad de control
La unidad de control se usa para presentar en pantalla todas las funciones del piloto
automático y cualquier otro módulo conectado a través de un enlace de datos; normalmente se opera con pulsadores (Autohelm) o con gobiernos de ajuste (Robertson). Los tamaños de las pantallas son variados y, como es de suponer, las de mayor tamaño suelen resultar de lectura más fácil. Las modernas pantallas LCD de alto contraste se desdibujan si se exponen a una excesiva luz solar directa; por consiguiente, lo ideal es montarlas verticalmente, nunca planas,sobre una plataforma. Cuando es necesario, habitualmente es posible instalar unidades de control adicionales para que el operador no esté limitado a la bañera principal. También se dispone de palancas de gobierno que permiten un control directo de la unidad de accionamiento del piloto automático.

Unidad de procesamiento central
La unidad de procesamiento central consta de: ordenador de navegación, compás,
indicador de la posición del timón, transductor de aleta y periféricos.

Ordenador de navegación
El ordenador de navegación, instalado debajo de la cubierta, es el responsable del
procesamiento de todas las órdenes y señales requeridas para el cálculo de los movimientos necesarios del timón para la corrección del rumbo y la activación de la unidad de accionamiento. En resumen, relaciona el software con el hardware y convierte las señales en acciones. Hay dos clases de ordenadores de navegación:
La versión manual, que es instalada y ajustada por el usuario o el instalador;
La versión autoadaptable, que adquiere información de las operaciones recientes y de
los datos registrados.
Ambas tienen sus ventajas y desventajas, pero los navegantes suelen preferir la facilidad de la caja negra autoadaptable. Aparte de la visualización de unas pocas decisiones básicas (modo de ganancia, virada por avante automática (auto-tack), compás o aleta), el usuario sólo tiene que sentarse a observar cómo el software hace su trabajo.

Compás
Los compases o brújulas trabajan mejor en tierra. Los problemas empiezan una vez a
bordo: el cabeceo, el balanceo, la escora, la aceleración y la desaceleración son factores que afectan al compás. El ordenador de navegación necesita una señal clara y legible del compás para gobernar correctamente; la precisión del rumbo del piloto automático depende del impulso de gobierno del compás.
La posición del compás es muy importante y antes de su instalación es necesario tener en cuenta las siguientes cuestiones:
Cuanto más centrado esté el compás en el barco, mayor será el número de
movimientos que deberán ser filtrados.
Cualquier variación de los campos magnéticos locales impedirá una señal precisa. El
compás deberá mantenerse bien alejado de motores eléctricos, bombas, generadores,
radios, receptores de TV, instrumentos de navegación, cables de alimentación eléctrica y objetos metálicos.
Los compases requieren temperaturas constantes, por lo que debe evitarse ubicarlos en
lugares expuestos a la luz solar o a fuentes de calor (motor, cocina, calefactor, etc.).
Un buen lugar en la mayoría de diseños de yates, siempre que no tengan un casco de acero, es debajo de la cubierta y cerca de la base del mástil. El punto de mayor estabilidad en los yates más modernos está situado más hacia popa, normalmente a un tercio de la eslora desde la popa. En los barcos metálicos hay distintos modos de obtener impulsos de gobierno
correctos. Robertson ha utilizado con éxito en barcos de pesca comerciales un montaje en el que se coloca debajo de la cubeta de bitácora un compás magnético con detector de rumbo que detecta los cambios en los campos magnéticos. Otros fabricantes colocan su brújula de inducción terrestre sobre la cubierta o incluso en el mástil, que no siempre es la posición ideal debido a su acentuado movimiento. En los barcos de acero son especialmente importantes la instalación y la calibración cuidadosas del compás (una brújula de inducción terrestre no puede usarse debajo de la cubierta en un yate de acero).
La distancia desde el compás hasta el ordenador de navegación debe ser lo más corta
posible para reducir al mínimo el problema de la caída de voltaje. A mayor distancia, más finos deben ser los cables. Una cuestión que debe tenerse siempre en cuenta para la instalación es la siguiente: cualquiera que sea la ubicación del compás, éste debe ser fácilmente accesible.
Es posible elegir entre tres tipos de compás: el compás magnético, la brújula de inducción terrestre y el girocompás. Los sensores de inducción terrestre que suministran datos del rumbo al ordenador de navegación son estándar para casi todos los fabricantes. La eficacia del gobierno en condiciones de ensayo puede optimizarse mediante la instalación de un sistema de flujómetro electrónico especial. Autohelm usa un transductor ‘GyroPlus’, mientras que Robertson dispone de un nuevo tipo de compás en el que las señales de inducción terrestre se traducen en señales de frecuencia cuyas variaciones pueden controlarse más fácilmente. Una mayor optimización incluye amortiguación por fluido y promediación electrónica. La calidad
de la señal final para las acciones de gobierno está directamente relacionada con el precio y la calidad del sensor. En realidad, se obtiene lo que se paga y lamentablemente la gama de precios, que comienza con unas 200 libras para una brújula de inducción terrestre y cerca de 240 libras para un compás magnético y detector de rumbo comunes, alcanza las 9.000 libras para una unidad de girocompás de la gama de alta tecnología.

Indicador de la posición del timón
El transductor de la posición del timón está montado en el timón e informa al ordenador de navegación de la posición del mismo. Puede acomodarse en el interior de la unidad de accionamiento (protegido de pisadas accidentales) o externamente en el puesto de gobierno (más vulnerable).

Transductor de aleta
Un transductor montado en una aleta o en la cabeza del mástil transmite información desde el ángulo del viento aparente hasta el ordenador de navegación.

Periféricos
Las señales de otros equipos de navegación, como Decca, GPS, Loran, radar, indicador de velocidad y sondador acústico también pueden contribuir a la precisión del gobierno del barco aportando datos adicionales al ordenador de navegación.

La elección de un piloto automático
La eficacia de los pilotos automáticos de bañera es menor cuanto mayor es el tamaño de la embarcación. Los fabricantes especifican sus modelos más potentes para barcos que no pesen más de 9 toneladas e incluso esto puede parecer optimista en condiciones de funcionamiento más difíciles. Los pilotos automáticos de bañera también llegan a consumir mucha energía cuando soportan cargas más elevadas y por consiguiente no es aconsejable elegir una unidad para la cual el barco en cuestión se encuentra en el límite del intervalo de funcionamiento nominal.
La decisión principal en lo que respecta a los pilotos automáticos colocados en el interior del casco es el tipo de la unidad impulsora que se instale. La elección entre unidades impulsoras lineales mecánicas, lineales hidráulicas e hidráulicas depende esencialmente de:
- El tamaño del barco
- La disposición de gobierno del timón principal existente
- La capacidad de las baterías
- El fin al que está destinada
Aunque las unidades impulsoras lineales mecánicas consumen menos corriente y suelen
resultar más adecuadas para barcos pequeños, tienden a carecer de la potencia suficiente para embarcaciones de 12 m / 40 pies o más. Las unidades impulsoras lineales hidráulicas son más adecuadas para barcos de mayor tamaño, con cargas del timón más elevadas y grupos de batería más grandes. Por ese motivo las unidades impulsoras hidráulicas son muy aptas para barcos con gobierno principal hidráulico; para barcos más grandes la mejor opción es una bomba hidráulica de funcionamiento continuo.
Debe calcularse la velocidad de funcionamiento del piloto automático necesaria para
mantener el rumbo de un barco determinado. Los yates para navegación en alta mar de quilla larga pueden gobernarse con un sistema de funcionamiento potente pero más lentamente; por lo general, bastará con un movimiento del timón de unos 5-6º por segundo (sin carga). Un barco más ligero de 30 pies con quilla de deriva y timón compensado necesitará unos 15-20º(sin carga), pero la fuerza aplicada al timón nunca deberá ser muy elevada.
Los patrones de yates suelen solicitar ayuda al fabricante para calcular las necesidades específicas de su embarcación. Un elevado nivel de asesoramiento y asistencia por parte de un fabricante para resolver estas cuestiones es un buen comienzo, que sin lugar a dudas contribuirá a ganar un cliente. Para los patrones de yates potentes que muy pocas veces llevan sus embarcaciones más allá de los límites mecánicos indicados las consecuencias de un error de criterio en el momento de calcular esas necesidades serán frustración y molestias. Las consecuencias para el navegante de alta mar pueden ser desastrosas: deberá pasarse días enteros sin descanso al mando del timón.
Una última cuestión que debe tenerse en cuenta a la hora de elegir un piloto automático, a la que no se presta atención en un momento de peligro, es la comodidad debajo de la cubierta. Una unidad impulsora ruidosa puede convertir a una cabina acogedora en un lugar prácticamente inhabitable.

Sistemas de piloto de viento
Los sistemas de piloto de viento obtienen su impulso de gobierno del ángulo del viento aparente. La ventaja de este sistema es que un velero genera igualmente su impulsión a partir de su posición en relación con el viento aparente. Una vez que se han ajustado las velas y la aleta en el ángulo apropiado en relación con el viento, la embarcación continuará manteniendo ese ángulo indefinidamente y las velas estarán siempre adecuadamente orientadas.
La dirección del viento es la cuestión clave a la hora de planificar cualquier viaje. Si el viento sopla de popa es posible fijar la dirección del rumbo y disfrutar de un cómodo viaje de A a B siguiendo la ruta más corta. Sin embargo, cuando el viento sopla de proa el cambio de rumbo es inevitable y la dirección del compás es inútil; la ruta directa no es la más rápida si las velas están con el viento en contra.
Los tres elementos que integran un sistema de piloto de viento son la aleta, la conexión y el timón. A continuación describiremos cada uno de esos elementos:

La aleta
El impulso de gobierno en un piloto de viento procede de la aleta. La aleta toma la energía del viento aparente que se desplaza por su superficie en el ángulo fijado. Hay dos tipos de aleta, la aleta horizontal y la aleta vertical.
La aleta vertical
Cómo funciona
La aleta vertical o V gira alrededor de un eje vertical (el mismo principio de la veleta).
Siempre apunta directamente hacia el viento, de modo que la superficie efectiva de la aleta (la superficie realmente sujeta a la acción del viento) nunca es muy grande. Cuando la embarcación se desvía del rumbo, la aleta gira aproximadamente con un ángulo equivalente al de la desviación. El impulso de gobierno generado por esta desviación sólo puede enviar una cantidad de fuerza limitada puesto que una aleta V produce poca fuerza de torsión.
Ajuste
El ajuste de una aleta V hacia la dirección del viento no puede ser más fácil: cuando se la desbloquea para que gire, siempre apunta exactamente hacia el viento y no requiere ninguna fijación especial. Puede ajustarse para diferentes fuerzas del viento simplemente con moverla hacia dentro o hacia fuera a lo largo de su soporte de montaje. El aumento de la distancia entre la aleta y su eje (palanca más larga) ofrece mayor fuerza en caso de vientos suaves. La disminución de la distancia (palanca más corta) contribuye a reducir las vibraciones en el
piloto de viento en caso de vientos más intensos cuando la fuerza no es un problema.
Forma El aire que se desplaza a través de una aleta vertical es siempre laminar, por lo que las secciones aerodinámicas o los diseños con forma de cuña con bordes de separación de flujo son los más eficientes. Tanto una como otra alternativa no sólo son pesadas, sino que además su construcción resulta compleja y costosa, motivo por el cual casi todos los fabricantes prefieren los simples diseños planos.


Combinación de sistemas


Combinación de los sistemas de piloto automático y piloto de viento
En la actualidad los pilotos automáticos suelen formar parte del equipo estándar de un barco. Son una buena opción para el uso cotidiano en la navegación de fin de semana y durante las vacaciones, pero las razones en favor de un sistema de piloto de viento aumentan con la duración del viaje programado, especialmente cuando se navega con una tripulación poco numerosa, y su atractivo resulta irresistible si se trata de una travesía oceánica. A la larga es indudable que la mejor solución de gobierno automático para la navegación en alta mar es equiparse con un piloto automático y un piloto de viento.
Hay un método notablemente ingenioso para combinar las ventajas de ambos sistemas que, a pesar de que ha sido descrito de manera detallada varias veces en casi todas las principales publicaciones sobre navegación, todavía no ha llegado a ser conocido por la mayoría de los navegantes. Si se conecta un pequeño piloto automático de biela de empuje (p.ej. Autohelm 800) al contrapeso de un timón oscilante servoasistido, puede usarse para que suministre el impulso de gobierno en lugar de la aleta. La amplificación y la transmisión de la fueza de gobierno se efectúan igual que antes. Ahora el piloto automático puede gobernar el barco en el rumbo del compás con un consumo de energía sumamente bajo porque la única fuerza que debe aportar es la suministrada normalmente por la aleta (es decir, la necesaria para hacer girar al timón oscilante). La multiplicación de la fuerza de gobierno del pequeño piloto automático Autohelm 800 por la servofuerza del timón oscilante produce la fuerza de
gobierno suficiente en el timón principal para gobernar a un barco de 25 toneladas. Esta combinación resulta particularmente útil en viajes largos con mar de popa y con una muy ligera brisa de popa, cuando la fuerza del viento es insuficiente para generar una señal adecuada desde la aleta pero la velocidad del barco basta para impulsar el dispositivo servoasistido.
La síntesis de piloto automático y de sistema de piloto de viento con una combinación de Autohelm y Windpilot Pacific Plus en un mando a distancia es ideal cuando se navega con poca
tripulación.

La síntesis del piloto automático/piloto de viento logra en un sentido práctico superar las constantes físicas entre la entrada/salida y la fuerza de energía eléctrica/gobierno que se señala en el apartado de Pilotos automáticos del Capítulo 3.
Un piloto automático puede acoplarse de la manera descrita en casi todos los sistemas de piloto de viento.

Sistema de timón auxiliar:
El piloto automático es acoplado a la pequeña caña del timón de emergencia, pero no
existe ningún servoefecto puesto que en este sistema la aleta, y por lo tanto el piloto automático, hace girar directamente al timón auxiliar. Esta disposición sólo se requiere si no es posible conectar un piloto automático de biela de empuje a la caña del timón principal (p.ej., gobierno mediante la rueda del timón). Un piloto automático conectado a la caña del timón de emergencia suele producir vibraciones cuando se navega a motor porque el timón
auxiliar está en la estela turbulenta de la hélice.
Timones oscilantes servoasistidos:
La combinación produce mejores resultados y se realiza más fácilmente con este tipo de sistema. La pequeña clavija de sujeción del sistema de la biela de empuje puede montarse en cualquier parte de la aleta o del contrapeso. La amplitud máxima de movimiento de la aleta o del contrapeso en este punto debe ser superior a la distancia de punta a punta del piloto automático (Autohelm, Navico: 25 cm / 10 pulgadas), porque de lo contrario la aleta puede resultar dañada cuando el piloto automático quiera girar totalmente la caña del timón.

Sistemas de timón doble:
En este caso la ventaja mecánica de la combinación es incluso mayor. El timón del barco que debe gobernarse, por lo general una embarcación relativamente grande si cuenta con un sistema de doble timón, se utiliza para una orientación exacta del rumbo de manera que haya menos presión sobre el sistema, permitiéndole funcionar con mayor precisión.
En principio, el pequeño sistema Autohelm 800 sería capaz de controlar todas esas
disposiciones, pero la comodidad de un mando a distancia manual contribuye al atractivo del Autohelm 1000, el sistema de biela de empuje con esta opción más pequeño, y del TP 100 de Navico.
Los años de experiencia han demostrado repetid amente que muchos navegantes de alta
mar, en particular aquéllos que han recorrido pocas millas, al principio piensan instalar sólo un piloto automático. Eligen un sistema muy potente y sólido por razones de seguridad y fiabilidad. Al cabo de pocos días de navegación, posiblemente antes de que se hayan alejado demasiado de puertos bien abastecidos, se formulan un replanteamiento radical. A veces bastan unas pocas noches de guardia en medio del mar para que los tripulantes anhelen una solución más simple, por ejemplo el gobierno cómodo y silencioso de un piloto de viento.
La conclusión final de muchos patrones de yate es que el piloto automático potente fue una inversión innecesaria; a la larga, el viento es el mejor timón. Instalan en el sistema un pequeño piloto automático de bañera preparado para las zonas de calma chicha y entonces están equipados para todo. Un sistema combinado de piloto de viento/piloto automático de bañera suele costar menos que un piloto automático en el interior del casco y sin ninguna duda acumulará muchas más horas en el timón.

A simple vista

Comparación de sistemas: pilotos automáticos versus sistemas de
piloto de viento
A continuación se enumeran las ventajas y las desventajas que hemos identificado:
Piloto automático: Ventajas
-Invisible
- Compacto
- Funcionamiento simple
- El módulo del piloto automático puede integrarse con los instrumentos de navegación
- Mejor precio (pilotos automáticos de bañera)
- Ninguna interferencia con la navegación a motor
- Siempre listo para funcionar
Piloto automático: Desventajas
- Impulso de gobierno derivado del compás
- Consume electricidad
- Sensor de viento inferior a lo ideal
- Respuesta de gobierno retardada
- Funcionamiento ruidoso
- Fiabilidad técnica
- Vida limitada de los componentes de transmisión
- El gobierno empeora cuando se levanta viento y el mar se agita
- Mayor carga en los rodamientos del timón (el brazo del timonel cede ligeramente para
absorber los impactos de la caña del timón; por el contrario, la biela de empuje se
mantiene rígida, por lo que los impactos son absorbidos por los rodamientos).
Sistema de piloto de viento: Ventajas
- Impulso de gobierno derivado del viento
- No utiliza electricidad
- El gobierno mejora cuando se levanta viento y el mar se agita
- Respuesta de gobierno inmediata
- Funcionamiento silencioso
- Fiabilidad mecánica
- Construcción sólida
- Timón auxiliar = timón de emergencia
- Larga vida de funcionamiento
- Menor carga en los rodamientos del timón (timón oscilante servoasistido) porque la
conexión no es rígida
Sistema de piloto de viento: desventajas
- No puede utilizarse en situación de calma
- Posibles errores del operador
- Algunos sistemas interfieren con la navegación a motor
- Es probable que sea necesario cambiar de lugar la escalerilla (sistema de timón
oscilante)
- Poco discreto
- A veces la instalación resulta complicada.

No hay comentarios: